Huang en kollega's hebben onderzoek gedaan naar genetische variaties (polymorfismen:
klik hier en
hier
voor een toelichting) bij CVS-patiënten en "chronische vermoeide mensen".
Het merkwaardige aan deze studie, die voortborduren op een CDC-studies uit 2006
(klik hier en
hier
voor de studies en
klik hier,
hier,
hier
en hier voor kritiek), is
dat de onderzoekers zich uitsluitend richten op 42 genetische variaties
die betrekking hebben op 10 genen gerelateerd aan de HPA-as/stressresponse!
Blijkbaar hebben de psychosociale vakbroeders
(klik hier), door de feiten gedwongen,
hun "dysfunctionele gedachten-leiden-tot-dekonditionerings-theorie" definitief ingeruild
voor de "verstoorde-stressresponse-leidt-tot-een-omtregeld-afweersysteem-theorie".
Dat aktivering van het afweersysteem vrijwel leidt tot onderdrukking van de HPA-as, onder meer verminderde gevoeligheid bijnieren voor ACTH
(klik hier), wil er blijkbaar niet in.
Dus onderzoek je gewoon alleen 10 genen wél en tienduizenden andere genen niet.
Als je iets wil "aantonen", lukt je dat altijd...
Uit het studierapport
Background
...
Among hypotheses on aetiological aspects of CFS,
one possible cause of CFS is genetic predisposition.
It has been reported that
subjects with CFS
were distinguished by
SNP markers in candidate genes
that were involved in
hypothalamic-pituitary-adrenal (HPA) axis function and
neurotransmitter systems,
including
catechol-O-methyltransferase (COMT),
5-hydroxytryptamine receptor 2A (HTR2A),
monoamine oxidase A (MAOA),
monoamine oxidase B (MAOB),
nuclear receptor subfamily 3; group C, member 1
glucocorticoid receptor (NR3C1),
proopiomelanocortin (POMC) and
tryptophan hydroxylase 2 (TPH2) genes.
Subjects
The dataset, including SNPs, age, gender, and race,
was original to the previous study
by the CDC Chronic Fatigue Syndrome Research Group [18].
More information is available on the website [18].
In the entire data set,
there were
109 subjects,
including 55 subjects
having had experienced
chronic fatigue syndrome (CFS) and
54 non-fatigued controls.
Table 1 demonstrates the demographic characteristics of study subjects.
Candidate genes
In the present study, we only focused on the 42 SNPs ....
As shown in Table 2, there were ten candidate genes including
COMT,
corticotropin releasing hormone receptor 1 (CRHR1),
corticotropin releasing hormone receptor 2 (CRHR2),
MAOA,
MAOB,
NR3C1,
POMC,
solute carrier family 6 member 4 (SLC6A4),
tyrosine hydroxylase (TH), and
TPH2 genes.
Six of the genes
(COMT, MAOA, MAOB, SLC6A4, TH, and TPH2)
play a role in the neurotransmission system.
The remaining four genes
(CRHR1, CRHR2, NR3C1, and POMC)
are involved in the neuroendocrine system [8].
Thus, this significant association strongly suggests that
NR3C1 may be involved in biological mechanisms with CFS.
The NR3C1 gene encodes the protein for the glucocorticoid receptor,
which is expressed in almost every cell in the body and
regulates genes that control a wide variety of functions
including the development, energy metabolism, and immune response of the organism.
A previous animal study has observed that
age increases the expression of the glucocorticoid receptor in neural cells, and
increases in glucocorticoid receptor expression in human skeletal muscle cells
have been suggested to contribute to the etiology of the metabolic syndrome.
A comparison of classification methods for predicting Chronic Fatigue Syndrome based on genetic data.
J Transl Med. 2009 Sep 22;7(1):81. [Epub ahead of print]
Huang LC, Hsu SY, Lin E.
BACKGROUND:
In the studies of genomics,
it is essential
to select
a small number of genes
that are more significant
than the others
for the association studies
of disease susceptibility.
In this work,
our goal was
to compare computational tools
with and
without feature selection
for predicting chronic fatigue syndrome (CFS)
using genetic factors
such as single nucleotide polymorphisms (SNPs).
METHODS:
We employed
the dataset
that was original to
the previous study by the CDC Chronic Fatigue Syndrome Research Group.
To uncover relationships
between CFS and
SNPs,
we applied
three classification algorithms
including naive Bayes,
the support vector machine algorithm, and
the C4.5 decision tree algorithm.
Furthermore,
we utilized
feature selection methods
to identify
a subset
of influential SNPs.
One was
the hybrid feature selection approach
combining the chi-squared and
information-gain methods.
The other was the wrapper-based feature selection method.
RESULTS:
The naive Bayes model
with the wrapper-based approach
performed maximally
among predictive models
to infer the disease susceptibility
dealing with
the complex relationship
between CFS and
SNPs.
CONCLUSION:
We demonstrated that
our approach is
a promising method
to assess
the associations
between CFS and
SNPs.
PMID: 19772600 [PubMed - as supplied by publisher]
full-text:
http://www.translational-medicine.com/content/pdf/1479-5876-7-81.pdf
|