Follow FrankTwisk on Twitter  
   

 

 

 

 

Hanlon:

MS en CVS gaan

veel vaker gepaard

met zwakheid

ten opzichte van

chronische ziekten

 

 

 

 


 

 

 

Peter Hanlon en anderen hebben in een grootschalig onderzoek 493.737 Britten bestudeerd en

op basis van 5 criteria (gewichtsverlies, uitputting, grijpkracht, fysieke activiteit en wandelsnelheid)

en een vragenlijst bepaald welke mensen als 'fysiek zwak' aangeduid kunnen worden.

 

Iemand werd als 'zwak' aangeduid als hij/zij aan minstens drie van de volgende criteria voldeed:

gewichtsverlies, 'vermoeid/uitgeput', geen/lichte activiteit, lage wandelsnelheid en weinig spierkracht.

 

De vijf ziekten/aandoeningen waarbij de kans op 'zwakte' het grootst is zijn, in volgorde van kans:

MS, CVS, COPD (chronische obstructieve longziekte), bindweefselziekte en diabetes,

waarbij wordt aangetekend dat de kansen op 'zwakte' bij MS en CVS 2 tot 2,5x zo groot zijn.

 

Overigens moet worden aangetekend dat het percentage met CVS (0,428% = 2.115/493.737)

aanzienlijk veel hoger is dan het percentage dat Nacul en collega's in 2011 vaststelden (0,19%).

De verschillen worden mogelijk mede veroorzaakt door het feit dat er sprake is van zelfdiagnose.

 

 


 

 

 

Frailty and pre-frailty in middle-aged and older adults and its association with

multimorbidity and mortality: a prospective analysis of 493.737 UK Biobank participants.

Lancet Public Health. 2018 Jun 13. pii: S2468-2667(18)30091-4.

doi: 10.1016/S2468-2667(18)30091-4.

Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS.

 

Abstract

 

BACKGROUND:

 

Frailty is associated with

older age and multimorbidity (two or more long-term conditions);

however, little is known about

its prevalence or effects on mortality in younger populations.

 

This paper aims to examine

the association between frailty, multimorbidity, specific long-term conditions, and mortality

in a middle-aged and older aged population.

 

 

METHODS:

 

Data were sourced from the UK Biobank.

 

Frailty phenotype was based on five criteria

(weight loss, exhaustion, grip strength, low physical activity, slow walking pace).

 

Participants were deemed frail if they met at least three criteria,

pre-frail if they fulfilled one or two criteria, and

not frail if no criteria were met.

 

Sociodemographic characteristics and long-term conditions were examined.

 

The outcome was all-cause mortality,

which was measured at a median of 7 years follow-up.

 

Multinomial logistic regression compared

sociodemographic characteristics and long-term conditions

of frail or pre-frail participants with non-frail participants.

 

Cox proportional hazards models examined

associations between frailty or pre-frailty and mortality.

 

Results were stratified by age group (37-45, 45-55, 55-65, 65-73 years) and sex, and

were adjusted for

multimorbidity count, socioeconomic status, body-mass index, smoking status, and alcohol use.

 

 

FINDINGS:

 

493.737 participants aged 37-73 years were included in the study, of whom

16.538 (3%) were considered frail,

185.360 (38%) pre-frail, and

291.839 (59%) not frail.

 

Frailty was significantly associated with multimorbidity (prevalence 18% [4435/25.338]

in those with four or more long-term conditions; odds ratio [OR] 27.1, 95% CI 25.3-29.1)

socioeconomic deprivation, smoking, obesity, and infrequent alcohol consumption.

 

The top five long-term conditions associated with frailty were

multiple sclerosis (OR 15.3; 99.75% CI 12.8-18.2);

chronic fatigue syndrome (12.9; 11.1-15.0);

chronic obstructive pulmonary disease (5.6; 5.2-6.1);

connective tissue disease (5.4; 5.0-5.8); and

diabetes (5.0; 4.7-5.2).

 

Pre-frailty and frailty were significantly associated with mortality for all age strata

in men and women (except in women aged 37-45 years) after adjustment for confounders.

 

INTERPRETATION:

 

Efforts to identify, manage, and prevent frailty

should include middle-aged individuals with multimorbidity,

in whom frailty is significantly associated with mortality,

even after adjustment for number of long-term conditions, sociodemographics, and lifestyle.

 

Research, clinical guidelines, and health-care services

must shift focus from single conditions

to the requirements of increasingly complex patient populations.

 

 

PMID: 29908859

 

 


 

Met dank aan een Vlaamse ME-de-strijdster die anoniem wenst te blijven.